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DEFINITION OF SYMBOLS 

Symbol 

E 

G 

V 

m 

r 

rO 

kr0 

nr 0 

W 

f 

A, B, C 

Yield point in Shear 

Radial, circumferential ,  axial s t r  es  s e s 

Radial, circumferential ,  axial s t ra ins  

A function used in Hencky's theory 

Y f  H 

Bulk modulus of elasticity (corresponding to 3cu 
in Ref. 4 

Young's modulus of elasticity 

Modulus of rigidity 

Poisson 's  ratio 

A numerical constant denoting the exponent of a 
simple power function 

(variable) radius a t  a point of the cylinder 

Inner radius of the cylinder 

Outer radius of the cylinder 

Radius of elastic-plastic interface 

r / ro  

A function used in the modified cri terion of yielding 

Constants of integration 

Other symbols will be defined as they appear in the text. 
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. STRESS AND STRAIN DISTRIBUTIONS IN A 

THICK-WALLED CYLINDER OF STRAIN-HARDENING MATERIAL 

ELASTIC -PLASTICALLY STRAINED BY INTERNAL PRESSURE 

By C. K. Liu* 
George C. Marshall  Space Flight Center 

SUMMARY 31 I44 
An attempt is  made to extend Allen and Sopwith's solution for an  

elastic-plastic thick-walled cylinder of ideally plastic mater ia l  to  
strain-hardening material .  
so  that the effective s t r e s s  (usually considered a function of the 
effective s t ra in)  i s  proportional to a simple power function of the radius 
in the plastic zone. 
ideally plastic material  seems to support and justify the proposed 
modification of the yielding criterion. The exponent of the power 
function is taken as -3/2, -5/4, 11, and -1/2, in each case  yielding 
an analytic solution corresponding to a particular strain-hardening 
material .  Examples worked a r e  for the case of plane s t ra in  and for 
a ra t io  of outer to  inner radii  of 2.0. When the exponent is taken to 

. be zero,  the solution becomes identical to that of Allen and Sopwith. 
F o r  exponents other than the five mentioned above, numerical  o r  
graphical methods of integration may be used. 

T resca ' s  cri terion of yielding is modified 

An analysis of Allen and Sopwith's solution for 

INTRODUCTION 

During the past two decades many solutions have been presented 
for the problem of plastically strained thick-walled cylinders. 
of different philosophies and purposes of the originators, some solutions 
emphasize the practical  aspects of the problem (REF. 1, 2, 3); others 
a r e  elegant in their mathematical  operations (REF. 4, 5, 6 ) ;  some a r e  
analytical (REF.  5, 6), and others numerical  (REF.  7 ,  8, 9) .  

Because 

F o r  engineering applications and for mathematical expediency, 
the authors impose various end conditions on the cylinder, or they 

.I- -,- 
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hypothesize that the mater ia l  is incompressible. In some cases ,  where 
plastic yielding is predominant, the mater ia l  is coqsidered as being 
plastic-rigid. 
assumed to strain-harden or  to be  ideally plastic. 

Moreover, the solutions also differ 'as the mater ia l  is 

Steele (REF. 6) presented a solution to this problem in closed and 
simple form. 
Tresca ' s  yielding criterion, and the assumption that the mater ia l  is 
incompressible in the elastic state.  
that across  the entire thickness of the cylinder (in both the elastic and 
plastic zones) the s t ra in  decreases  in inverse proportion to a function 
of the square of the radius a t  which the s t ra in  is sought. 

It is based on Hencky's total plastic s t ra in  theory, 

In assuming this ,  Steele postulates 

Ear l ie r ,  Allen and Sopwith (REF. 4) effected an analytical solution 
to the problem. Since they include the compressibility of the mater ia l  
in the elastic zone, their solution is more  rigorous mathematically, 
physically sound, and reasonably convenient to apply. Yet, i t  does 
not have provisions to take into account the strain-hardening property 
of the material .  
solution to strain-hardening mater ia l  by using a modified Tresca  
criterion of yielding. 

The solution in this report  extends Allen and Sopwith's 

As shown by Hill, Lee and Tupper ( R E F .  7 ) ,  the more  exact thecry 
governing the s t ress -s t ra in  relationship in the plastic region is the 
so-called "incremental theory" of which Hencky's total s t ra in  theory 
is a special case.  The latter however, is the form used in the vast 
majority of work on plasticity (REF. 4). Fur thermore ,  the solution 
obtained by applying Hencky's theory is a close approximation to that 
obtained by the more  exact'theory (REF. 9).  
authors (REF. 2,  3 ,  5, c ) ) ,  as well as Allen and Sopwith, have used 
Hencky's theory for no other reason than mathematical simplicity, 

It is probable that these 

METHOD OF SOLUTION 

The compressibility of the mater ia l  can be expr.essed as follows: 

1 - 2 v  
3 E  

where H = 

2 



. 
b By Hencky’s total s t ra in  theory, the following relationship between 

the plastic s t ra in  and s t r e s s  i s  postulated 

(2) =e -wr - ‘3 ai 

1 Tresca’s  yielding criterion is modified here  as follows: 

where f is a certain function dependent on the strain-hardening 
property of the material .  This function (f)  must  assume a value of 
unity when the strain-hardening effect of the mater ia l  is absent, or  
when plastic yielding is impending. 

1 Continuity a t  elastic-plastic interface, in addition to the given 
conditions at the inner and outer cylinder surfaces ,  provides the 
necessary equations from which the s t resses  may be determined. 
These conditions are:  

wrI  elastic = rrl plastic a t w  = n 

- r r  = s  a t w  = n 

w r  = 0 a t w  = k 

= e  
(4) 

The s t r e s s  distribution in the elastic zone is  given by the Lame 
solution, that is, 

B wr = A  - -  
W2 

B 
“ e = A + w 2  



* 
In the plastic zone ( 1 B w s n) ,  the s t r e s ses  a r e  found from the 
equation of equilibrium 

hence, m r =  S / ' d w t C  W 

Applying boundary conditions (4) the constants A, B, and C a r e  
found to be 

s n2 

k 2  
A = - -  

c = s  (.' 2k O Z k 2 )  - S l L  W dw 1 w = n  (12) 

Hence, the s t r e s ses  ac ross  the thickness of the cylinder (FIG l ) ,  a r e  

4 
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FIGURE 1 .  AN INFINITE HOLLOW CYLINDER ELASTIC-PLASTICALLY 
STRAINED B Y  INTERNAL PRESSURE 

I 5 



The 

dw t n2 - k2 
n 2k2 2 s  

S 

W 
n2 - k2 

S W 

elastic zone (n  4 w 4 k) (13) 

plastic zone (1 5 w 5 n) (14) 

a = to be determined later 

internal p re s su re  (p) can be found from condition (4) as 

S 

k2 - n2 
S dw - 2k2 

Fr.om the condition of compressibility (1) and Hencky’s total  s t ra in  
theory ( 2 ) ,  the s t ra in  in the plastic zone can be expressed in t e r m s  of 
the functionY and the s t r e s ses  given by equations (13) and (14). 

6 



Rewriting, equation (16) becomes 

Substitution of equation (14) into (19) gives 

Consequently, the three components of s t ra in  a r e  

2k 
dw t H t 2Y 

t 
- 

3 Y ( H - Y )  
H t 2Y 

H - Y  
El. = 

H t 2Y 

e Z  = constant, to be determined from the end condition of the 
cylinder 

To further investigate the relationship among the s t ra ins  and the 
function f ,  it is  necessary to apply the equation of compatibility 

The following equation is obtained after equations (21) and (22)  a r e  
substituted into equation (24) 

1 H E  d Y  - z 
( H t 2 Y ) ( 2 H + Y )  b$  ?)= y [ f S  

n2 -F2)- 2(H2 t HY t Yz) (25) - 3H2(lw-$ d w t  2k 1 
7 



Now, if f = 1 in equation (25) and we write 

i t  is found that equation (25) reduces to 

3x = -  - 3Y dy t 
(x - 1) (x t 3) dx x ( X  - 1) (X t 3) 

Equation (27) is identical to that of Allen and Sopwith (REF.  4, p. 70) 
for an  ideally plastic mater ia l .  Its solution i s  found as 

1 
1 t 12GH t ( tan-’ u - tanh-’u ) - 

1 - tanh” 

where 

1 - 2 v  
6(1 t v) 

GH = 

F o r  conveniencs in later computations, i t  is assumed that €2 = 0 
(that i s ,  the cylinder has clamped ends) and that v = 1/3.  Thus,  
equation ( 2 8 )  is simplified greatly: 

8 



- tanh-’ (2 / 3) t (tan-’ u - tanh-’ u) 

Equation (29) cor re la tes  the quantities w/n  and u (or  Y ,  in turn) 
in a transcendental  manner. The t e rm n / k  appears  to be a parameter  
that may or may not affect the (w/n) versus Y relationship appreciably. 
To  determine this ,  w /n  is plotted against 
s e r i e s  of values of n / k :  1 . 0 ,  0. 875, 0.750, 0 .  625,  0 .  500. In the 
actual cylinder,  w l ies  between 1 and n i n  the plastic zone. The 
corresponding range of w /n  is  l / n  to 1 .  Hence the plot of Y versus  
w/n  for  a particular value of n / k  has physical significance only when 

* w/n is within the range [1/  k(n/k)] to 1 .  This is the way to determine 
the range of interest  of w/n  for any choice of k. 

Y/H ( =  5 )  in FIG 2 for a 

In this repor t  the c a s e  of k = 2 is considered. It is found that 
while n / k  varies f rom 1 to 0. 5, the maximum range of variation in 
w/n  never exceeds 0.  37 percent.  With the scale  of plotting used in 
FIG 2 ,  i t  is difficult to distinguish these four curves ,  one overlapping 
whose relationship with Y is not appreciably affected by a change in  the 
value of n for a given value of k. 

Considering w/n  as an  independent variable,  it  may be advantageous 
to assume that the function f is a function of w /n  only. A possible 
form of f may be writ ten a s  

f = c,(w/nlm t ~ , ( w / n ) ~  t C,(w/n) P 

t ....... ( 1  5 w 5 n) 

w--ere C1, C2, C,, . . .  . ;  m, CY, P, . . . .  a r e  constants. TaLe purpose 
of shaping f in  this manner is to simulate the unknown relationship 
between w/n  and the respective plastic strain.  Here,  according to 
the charac te r i s t ics  of f ,  i t  will be  necessary that when w/n  = 1 

........... c,  t c, t c, t = 1  ( 3 1 )  
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Let it be further assumed that the constant C1 i s  predominantly 
la rger  than the sum of the r e s t  of the t e rms ,  then C1 = -1, I 

I C2 = C, = .... = O a n d  

With the function f expressed by equation (32 ) ,  equation (25 )  
becomes 

H n2 - k2 m 
m t 2 

- - -  
Y(2H t Y) (H t 2Y) 

- L)] m (33) 

The problem is thus reduced to solving the f i r s t  order ,  ordinary 
differential equation ( 3 3 ) .  The solution of equation ( 3 3 )  is 

1 t 2 5  m 
2 m  t 1 
2(m t 2) ,2 (m t 2) 

1 1  



in which g = Y/H, and K ' ,  the constant of integration, is  determined ' 
by the condition: 

K '  = 

w = n, or f = 1, = 1/(6GH).  Thus: 
2m t 3 

2(M t 2) 

2 m  t 1 
2 ( m  t 2) 

1 
m - -  

(2 +E) 1 m t 2  

J 

Consequently. equation (34) becomes 

1 
6 =E 

I \--7 
1 .  

m t z. L S :  

1 t 2 E  
1 +- 

e 3GH 

2 m  t 3 2 m  t 1 2 m  t 3 2m t 1 
2 ( m  t 2 )  

( 2  + E )  2'" 2, 
2 ( m  t 2)  2 ( m  t 2)  

(A) (z+&) 

1 2  



. The evaluation of the integral in equation (36)  for the general case 
is quite cumbersome, but the integration can be car r ied  out easily if 
the exponent m is given particular values, such as - 3 / 2 ,  -5 /4 ,  -1, 
- 1 1 2 ,  etc. Four  solutions corresponding to these four exponents a r e  
given below. 
m = - 3 / 2 ,  

3 (37) 
22  1 2 1 64 

7 27 ( 1 t 2 6 ' )  t - -  t -  
.Et 

- [In El  t 2 27 ( 2  tg') 9 (2 t o  
6GH 

1 



m = -1, 
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Again, assuming cz = 0 for  a cylinder with clamped ends, and 
v = 1 / 3  (6GH = 1/4) it is possible to examine the relationship between 
w / n  and for various values of rn . In FIG 3, four curves are 
plotted s o  that the effect of m on 6 can be brought out. 
that the mater ia l  with m = -3/2 at  a fixed value of w /n  yields the 
smallest value of among the four materials. 
of n corresponds to a fixed magnitude of the internal p re s su re  (p) 
through equation (15). 
relationship between 6 and w / n  for various values of n/k. The 
single curve shown is actually four curves of different lengths over- 
lapping one another. 

It is seen 

Note that fixed value 

In FIG 2, a dimensionless plot is shown for  the 

With the interdependence between (w/n)m and 6 determined, it 
is possible to check back to see  what degree of strain-hardening each 
value of m represents .  F r o m  the yielding criterion (3) it is  assumed 

and f r o m  Hencky's total s t ra in  theory ( 2 ) ,  

Combining equations ( 3 )  and ( 2 ) ,  

Y 
S H  H 

€8 - = 3- f  = 36f 

F o r  certain values of m, 6 and f are related to each other 
according to the curves in FIG 3 .  Hence, by plotting f against 36f, 
a dimensionless s t ress -s t ra in  diagram of this particular mater ia l  can 
be obtained. 
plastic material (m = 0 ,  a r e  shown in FIG 4. 

Four curves of this kind, including that for an ideally 

15 
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c Once the exponent of strain-hardening of a cylinder mater ia l  is 
selected by comparing i t s  dimensionless s t r e s s - s t r a in  diagram with 
the curves in FIG 4, the stress and strain distributions a c r o s s  the 
cylinder radius can be readily determined f rom equations (13),  (14), 
(19), (21)  and (22) .  The s t r e s s  distributions in cylinders made of four 
different mater ia l s  (m = 0 ,  -1 /2 ,  -1, -3/2)  for a degree of yielding 
of n = 2, are plotted in FIG 5. The cylinder used in the i l lustrative 
example has an outside radius twice as la rge  as i ts  inner radius,  in 
other words,  k = 2. 

A comparison between equation (19') and the third of equations (1 3) 
shows that the factor 

Y - H  E -  1 
H t 2Y 1 t 2 c  

or 

has character is t ics  s imi la r  to that of the Poisson 's  ra t io ,  v. 
factor assumes a value of 1 / 3  when 6 = 4, and approaches the value 
of 1 / 2  when E -. m. 

This 

CONC LUSIONS 

Allen and Sopwith's solution f o r  the thick-walled cylinder problem 
for an ideally plastic mater ia l  was extended to strain-hardening 
mater ia l  by introducing a strain-hardening function to the Tresca ' s  
cr i ter ion of plastic yielding. 
to have the form of a simple power function of the dimensionless radius 
in the plastic zone. 
have different constant values, fractional or integral, depending on the 
strain-hardening property of the mater ia l  concerned. A s  demonstrated 
in the foregoing analysis,  the solution to this problem is in analytical 
and closed form if this exponential constant is equal to  -3/2,  -5/4,  -1 ,  
- 1 /2  and 0. These exponents correspond to  five mater ia l s  with different 
strain-hardening character is t ics  similar to  those observed in metals.  
Since the case  of zero  exponent coincides with that of Allen and Sopwith's 
ideally plastic mater ia l ,  their relative degTee of strain-hardening can be 
compared by examining the curves in FIG 4, where the dimensionless 
quantities of maximum shearing s t r e s s  and s t r a in  a r e  plotted as 
ordinate and absc issa .  

This strain-hardening function is assumed 

The exponent of this simple power function may 

17 



0 cr 
d 
0 cr 

I 

4 
w 
d 

18 



1 . 6  

1 . 2  

0.8 

0.4 

0 

-0.4 

-0.8 

- 1 . 2  

-1  

(r 

I - n = 2  

k = 2  

=I- 
D 
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The assumption that the maximum shearing s t r e s s  (effective s t r e s s )  
i s  proportional to a simple power function of the radius has been deduced 
from the solution of Allen and Sopwith as reasonable for engineering 
applications. Examination reveals that the value of this simple power 
function a t  any radius in the plastic zone i s  not appreciably affected by 
the amount of yielding that has penetrated beyond that redius.  
the realm of engineering significance and application, the example 
shown in this report  (k = 2)  seems to strengthen this assumption. 

I 

I 
I 

I Within 

For exponents other than the five mentioned above, the integration 
involved may become very tedious for analytical solutions. 
cases ,  graphical or numerical processes  may be used. 

In those 

Although the cylinder used in the illustrative example was assumed 
to have clamped ends, this was mainly for the convenience of computation 
and is not a limitation of the theory. 

2 0  
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